The risks of relying on a narrow species base for our food

The Cavendish banana

Cavendish bananas are the fruits of one of a number of banana cultivars belonging to the Cavendish subgroup of the AAA banana cultivar group. The same term is also used to describe the plants on which the bananas grow.

They include commercially important cultivars like ‘Dwarf Cavendish‘ (1888) and ‘Grand Nain‘ (the “Chiquita banana”). Since the 1950s, these cultivars have been the most internationally traded bananas.[1] They replaced the Gros Michel banana (commonly known as Kampala banana in Kenya and Bogoya in Uganda)[2] after it was devastated by Panama disease.

Cavendish bananas accounted for 47% of global banana production between 1998 and 2000, and the vast majority of bananas entering international trade.

The fruits of the Cavendish bananas are eaten raw, used in baking, fruit salads, and to complement foods. The outer skin is partially green when bananas are sold in food markets, and turns yellow when the fruit ripens. As it ripens the starch is converted to sugars turning the fruit sweet. When it reaches its final stage (stage 7), brown/black “sugar spots” develop. When overripe, the skin turns black and the flesh becomes mushy.

Bananas ripen naturally or through an induced process. Once picked they can turn yellow on their own provided that they are fully mature by the time they are being harvested, or can be exposed to ethylene gas to induce ripening. Bananas which are turning yellow emit natural ethylene which is characterized by the emission of sweet scented Esters. Most retailers sell bananas in stages 3–6, with stage 5–7 being the most ideal for immediate consumption. The PLUs used for Cavendish bananas are 4011 (yellow) and 4186 (small yellow). Organic Cavendish bananas are assigned PLU 94011.

Panama disease

Panama disease, an infection that ravages banana plants, has been sweeping across Asia, Australia, the Middle East and Africa. The impact has been devastating. In the Philippines alone, losses have totalled US$400m. And the disease threatens not only the livelihoods of everyone in this US$44 billion industry but also the 400m people in developing countries who depend on bananas for a substantial proportion of their calorie intake

However, there may be hope. In an attempt to save the banana and the industry that produces it, scientists are in a race to create a new plant resistant to Panama disease. But perhaps this crisis is a warning that we are growing our food in an unsustainable way and we will need to look to more radical changes for a permanent solution.

To understand how we got here, we need to take a look back at the history of the banana, and in particular the middle of the last century, when a crisis that had been growing for decades was threatening to bring down whole economies and leave thousands destitute. The banana was dying out.

A condition known as Fusarium wilt or Panama disease was wiping out whole plantations in the world’s major banana-producing countries of Latin America. It threatened an industry so important to this part of the world that some states had became known as banana republics because they were virtually governed by the corporations that produced the crop.

Read more

************

The banana is dying. The race is on to reinvent it before it’s too late [Wired, Long Reads]

The world’s most popular fruit is facing extinction, and scientists are racing to use gene-editing to save it. To succeed, they’ll need to overcome an even bigger problem: opposition to GMO crops

During the summer of 1989, Randy Ploetz was in his laboratory just south of Miami, when he received a package from Taiwan. Ploetz, who had earned his doctorate in plant pathology five years earlier, was collecting banana diseases and regularly received mysterious packages containing pathogens pulled out of the soil from far-flung plantations. But gazing down his microscope, Ploetz realised this Taiwanese pathogen was unlike any banana disease he’d encountered before, so he sent the sample for genetic testing. It was Tropical Race 4 (TR4) – a strain of the fungus Fusarium oxysporum cubense that lives in the soil, is impervious to pesticides, and kills banana plants by choking them of water and nutrients. It was a pathogen that would go on to consume the next three decades of his professional life.

TR4 only affects a particular type of banana called the Cavendish. There are more than 1,000 banana varieties in the world, but the Cavendish, named after a British nobleman who grew the exotic fruit in his greenhouses on the edge of the Peak District, makes up almost the entire export market. The Brazilian apple banana, for example, is small and tart with firm flesh, while the stubby Pisang Awak, a staple in Malaysia, is much sweeter than the Cavendish. But no banana has become as ubiquitous as the Cavendish, which accounts for 47 per cent of all global production of the fruit. According to the Food and Agriculture Organisation of the United Nations, this amounts to 50 million tonnes of Cavendish bananas every year – 99 per cent of all global banana exports.

The UK, which imports five billion bananas every year, has become used to this seemingly endless supply of cheap and nutritious fruits shipped from plantations thousands of kilometres away across the Atlantic. But the high-volume, low-margin banana industry has been balancing on a knife edge for decades. “It looks very stable because we’re getting bananas, but the environmental and social costs that allow that to happen have been high,” says Dan Bebber, a researcher at the University of Exeter who works on a UK government-funded project aimed at securing the future of the banana. If one part of this tightly-wound supply chain snaps, the whole export industry could come tumbling down.

Despite its ubiquity, the Cavendish is something of a genetic outlier among crops: because it has three copies of each chromosome, it is sterile and can only reproduce by creating clones of itself. This makes the Cavendish an ideal crop to grow at scale – farmers know how a plantation of Cavendish bananas will respond to pesticides, how fast its fruit will ripen, how many bananas each plant will yield. “You know what’s going to happen to a Cavendish banana when you pick it,” says Bebber. “When you put it in a refrigerated container, you know exactly what’s going to come out of the other end most of the time.” Cavendish plants are short, so they don’t blow over easily in a hurricane, are easy to spray with pesticides, and reliably produce lots of bananas.

Read more

***************

Building A Better Banana

It is the world’s No. 1 fruit, now diseases threaten many varieties, prompting a search for new hybrids of the “smile of nature”

Sleet slices through the sky nearly sideways, propelled by Arctic blasts from the North Sea. I am in northern Belgium, wandering the grounds of a Baroque castle at the Catholic University of Leuven, about 15 miles northeast of Brussels. I am on a pilgrimage of sorts, seeking enlightenment about Musa sapientum, better known as the common supermarket banana. Building 13, a plain two-story brick structure within the castle walls, houses the world’s largest collection of banana varieties.

The basement room is the size of a semitrailer. It is cool and humid, with a slight musty odor. Two rows of metal shelving hold hundreds of wire racks filled with yellowcapped test tubes. Each tube contains a small, rooted plantlet about the size of your little finger. All told, the room contains nearly 1,200 varieties of bananas. They look like overgrown bean sprouts. “After you’ve worked with tissue cultures for a while, you begin to recognize different types,” says Ines Van den Houwe, the Belgian agricultural engineer in charge of the collection. She points out specimens. “This one is probably a type of dessert banana. Here’s a hybrid plantain. And this looks like a balbisiana cooking banana,” she says, referring to its wild forebear, Musa balbisiana. “Roughly 900 of these are traditional cultivated varieties. Another 100 are improved varieties or hybrids from various breeding programs. And about 180 are wild relatives. We have material from 44 countries, from the plantations of Central America to the deepest rain forests in Malaysia.”

Read more

***********

“A lot of people would agree that we need to move to a more diverse, more sustainable system for bananas and agriculture in general,” says Bebber, “where we don’t put all our hope into a single, genetically identical crop.”

What We Can Learn From the Near-Death of the Banana

The banana has been the subject of Andy Warhol’s cover art for the Velvet Underground’s debut album, can arguably be the most devastating item in the Mario Kart video game franchise and is one of the world’s most consumed fruits. And humanity’s love of bananas may still be on the rise, according to data from the Food and Agriculture Organization of the United Nations. On average, says Chris Barrett, a professor of agriculture at Cornell University, citing that U.N. data, every person on earth chows down on 130 bananas a year, at a rate of nearly three a week.

But the banana as we know it may also be on the verge of extinction. The situation led Colombia—where the economy relies heavily on the crop, as it does in several other countries including Ecuador, Costa Rica and Guatemala—to declare a national state of emergency in August. Banana experts around the world have raised concerns that it may be too late to reverse the damage.

The reason for the problem comes down to a single disease, but it also has far-reaching implications—and the world is watching. Even if the world’s relationship to bananas may never be the same, the lessons of the fruit can still save us from damage that could hit far beyond the produce aisle.

“The story of the banana is really the story of modern agriculture exemplified in a single fruit,” says Daniel Bebber, who leads the BananEx research group at the University of Exeter. “It has all of the ingredients of equitability and sustainability issues, disease pressure, and climate change impact all in one. It’s a very good lesson for us.”

Ninety-nine percent of exported bananas are a variety called the Cavendish—the attractive, golden-yellow fruit seen in the supermarket today.

But that wasn’t always the case. There are many varieties of banana in the world, and until the later half of the 19th century, the dominant one was called the Gros Michel. It was widely considered tastier than the Cavendish, and more difficult to bruise. But in the 1950s, the crop was swept by a strain of Panama disease, also known as banana wilt, brought on by the spread of a noxious, soil-inhabiting fungus. Desperate for a solution, the world’s banana farmers turned to the Cavendish. The Cavendish was resistant to the disease and fit other market needs: it could stay green for several weeks after being harvested (ideal for shipments to Europe), it had a high yield rate and it looked good in stores. Plus, multinational fruit companies had no other disease-resistant variety available that could be ready quickly for mass exportation.

Read more

Videos

Facebook
Verified by MonsterInsights